

The Inflation Expectations of the Hand-to-Mouth

Gabriele Buontempo

LMU Munich

Why the Inflation Expectations of the HtM?

Aim: Answer 2 questions

- 1. How do inflation expectations **differ** between HtM and non-HtM?
- 2. How does this difference **affect** the transmission of policy?

Why?

- Inflation expectations matter for the consumption/saving decision and for the effectiveness of monetary policy.
- → Which expectations matter? HtM or non-HtM? [Angeletos and Lian, 2018, Coibion et al., 2020]
- HtM matter for the **transmission of policy** through GE effects.
- → Do inflation expectations affect the importance of this channel? [Kaplan et al., 2018, Auclert et al., 2020, Bilbiie, 2020]
- Evidence of **underreaction** to inflation news.
- → Does it differ between HtM and non-HtM? What does it imply? [Coibion and Gorodnichenko, 2015, D'Acunto et al., 2022]

The Data

- Microdata from Survey of Consumer Expectations (SCE) of the NY Fed
- Identify Hand-to-Mouth households with the question:

What do you think is the percent chance that you could come up with \$2,000 if an unexpected need arose within the next month?

• Yielding that $\approx 40\%$ of households are HtM , half of which are wealthy HtM. \rightarrow In line with Kaplan & Violante 2014.

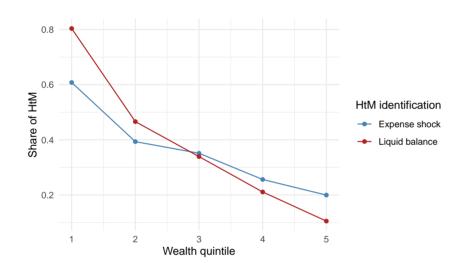


Figure 1. HtM identification in the SCE

Four Facts about HtM Inflation Expectations

The inflation expectations of HtM households:

- 1. Have a **higher forecast error** compared to those of non-HtM. → 100 bp higher during low inflation, 250 bp higher during inflation surge.
- \rightarrow 100 bp higher during low inflation, 250 bp higher during inflation surge.
- 2. Have a **higher** *absolute* **forecast error** compared to those of non-HtM.
- ightarrow 100 bp higher during low inflation, 200 bp higher during inflation surge.
- 3. Are more volatile compared to those of non-HtM.
- ightarrow Variance of the time series for HtM is more than 3 times higher.
- 4. Are more dispersed in the cross-section compared to those of non-HtM.
- $\rightarrow\,$ RMS deviation from the group mean is 25% higher for HtM.

The Forecast Error of Inflation Expectations

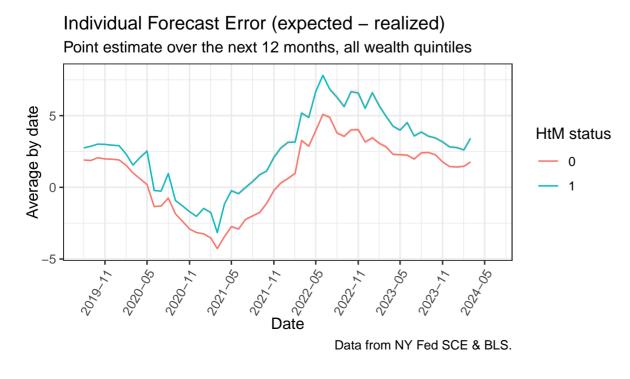


Figure 2. Forecast Error during the **inflation surge**

A Model of Inflation Expectations

A noisy signal model can rationalize these facts and allows to estimate structural differences in the inflation expectation processes.

[Mankiw and Reis, 2002, Woodford, 2003, Vellekoop and Wiederholt, 2019]

Idea:

- Discrepancy between the *actual* and the *perceived* inflation signal: bias μ and overconfidence σ_{ε} .
- Bias leads to persistent forecast errors, despite updating.
- Differences in confidence in the signal lead to different Kalman gains.

Perceived state equation:

$$\pi_{t+1} = \rho \pi_t + u_{t+1} \tag{1}$$

Perceived inflation signal:

$$S_t = \pi_t - \mu + \varepsilon_t$$
 with σ_{ε} the variance of ε_t (2)

Using the Kalman gain, the inflation forecast over a quarter is:

$$\hat{\pi}_{t+1|t} = \rho \hat{\pi}_{t|t-1} + \rho \underbrace{\frac{\mathbf{P}_{t|t-1}}{\mathbf{P}_{t|t-1} + \boldsymbol{\sigma}_{\varepsilon}}}_{\mathbf{K}_{t}} \left(\pi_{t} - \hat{\pi}_{t|t-1} + \boldsymbol{\mu} + \varepsilon_{t}^{A} \right)$$
(3)

Estimation

The yearly inflation forecast from the model can be rewritten as:

$$\hat{\Pi}_{t+4|t} = \beta_0 + \beta_1 \hat{\Pi}_{t+3|t-1} + \beta_2 \pi_t + \nu_t$$

that can be **estimated with a regression** where:

$$\begin{cases} \beta_0 &= \mathsf{K}(\rho + \rho^2 + \rho^3 + \rho^4)\mu \\ \beta_1 &= \rho(1 - \mathsf{K}) \\ \beta_2 &= \mathsf{K}(\rho + \rho^2 + \rho^3 + \rho^4) \end{cases}$$

	Year-on-year inflation expectations: $\hat{\Pi}_{t+4 t}$			
	2014-2020		2020-2024	
	HtM	non HtM	HtM	non HtM
	(1)	(2)	(3)	(4)
β_1 - Lagged expectations: $\hat{\Pi}_{t+3 t-1}$	0.776***	0.780***	0.753***	0.742***
	(0.002)	(0.002)	(0.003)	(0.003)
eta_2 - Quarterly inflation: π_t	0.061	-0.021	0.655***	0.439***
	(0.045)	(0.027)	(0.039)	(0.023)
eta_0 - Constant	0.864***	0.724***	1.094***	0.905***
	(0.021)	(0.013)	(0.034)	(0.020)
Implied $\hat{ ho}$	0.776***	0.780***	0.934***	0.874***
Implied $\hat{\mathbf{K}}$	0	Ο	0.193***	0.151***
Implied $\hat{\mu}$		•	1.670***	2.062***
Observations	46,309	68,810	29,478	42,456
Adjusted R ²	0.6192	0.6275	0.5991	0.5859

Key Takeaways

- Inflation expectations differ between HtM and non-HtM.
- ightarrow Four facts can be characterized.
- $\rightarrow\,$ In particular higher forecast error.
- → Aggregate forecast error on inflation expectations is mainly driven by HtM households.
- A noisy signal model can rationalize these differences.
- \rightarrow Estimation implies **higher Kalman gain** for HtM than non-HtM.
- Ignoring these differences leads to **overestimate the Kalman gain**.
- \rightarrow On the Euler equation, it's the Kalman gain of **non-HtM** that matters (\approx 0.15).

Next steps:

- Standard HANK assumes Kalman gain = 1.
- Work in progress: HANK with model of inflation expectations that fits the data.
- Question: How does the smaller K of non-HtM affect direct and GE effects?
- → Should make GE effects relatively more important.